bookmarks  34

  •  

    The MoGo artificial intelligence engine defeated professional 5th DAN Catalin Taranu in a 9x9 game of Go during the Go Tournament in Paris in late March. The victory, the first officially sanctioned "non blitz" victory for a machine over a Go Master, is considered a significant achievement because the game is patterned more after human thought than chess and its possible combinations exceed the number of particles in the universe. Taranu says the system was close to reaching the level of DAN in performance. The computer did lose to Taranu in a 19x19 configuration with a nine-stone handicap. The French National Institute for Research in Computer Science and Control (INRIA) developed the artificial intelligence engine. "The software used in this victory--the result of a collaboration between INRIA, the CNRS(1), LRI(2) and CMAP(3)--is based on innovative technologies that can be used in numerous different areas, particularly in the conservation of resources which is such a vital issue when it comes to tackling environmental problems," says INRIA researcher Olivier Teytaud, who led the MoGo team.
    16 years ago by @gwpl
     
     
  •  

    Projekt europejski 6PR o tematyce zbliżonej do mTeam, bez uwzględniania urządzeń mobilnych, za to dużo o zarządzaniu wiedzą (knowledge management) dla współpracy.
    16 years ago by @adamw
     
     
  •  

    The European Union-funded RobotCub project will send an iCub robot to six European research labs, where researchers will train iCub to learn and act independently by learning from its own experiences. The project at Imperial College London will examine how "mirror neurons," which fire in humans to trigger memories of previous experiences when humans are trying to understand the physical actions of others, can be translated into a digital application. The team at UPMC in Paris will explore the dynamics needed to achieve full body control for iCub, and the researchers at TUM Munich will work on developing iCub's manipulation skills. A project team at the University of Lyons will explore internal simulations techniques, which occur in our brains when planning actions or trying to understand the actions of others. In Turkey, a team at METU in Ankara will focus on language acquisition and the iCub's ability to link objects with verbal utterances. The iCub robots are about the size of three-year-old children and are equipped with highly dexterous hands and fully articulated heads and eyes. The robots have hearing and touch capabilities and are designed to be able to crawl and to sit up. Researchers expect to enable iCub to learn by doing, including the ability to track objects visually or by sound, and to be able to navigate based on landmarks and a sense of its own position.
    16 years ago by @gwpl
     
      acm_technews
       
       
    •  

      Cryptography has been an arms race, with codemakers and hackers constantly updating their arsenals, but quantum cryptography could theoretically give codemakers the upper hand. Even the absolute best in classical encryption, the 128-bit RSA, can be cracked using brute force computing power. However, quantum cryptography could make possible uncrackable code using quantum key distribution (QKD). Modern cryptography relies on the use of digital keys to encrypt data before sending it over a network so it can be decrypted by the recipient. QKD promises a theoretically uncrackable code, one that can be easily distributed and still be transparent. Additionally, the nature of quantum mechanics makes it so that if an eavesdropper tries to intercept or spy on the transmission, both the sender and the receiver will know. Any attempt to read the transmission will alert the sender and the receiver, allowing them to generate a new key to send securely. QKD had its first real-world application in Geneva, where quantum cryptography was used in the electronic voting system. Not only did QKD guarantee that the poll was secure, but it also ensured that no votes were lost in transmission, because the uncertainty principle established that there were no changes in the transmitted data. The SECOQC project, which did the work for the voting system, says the goal is to establish network-wide quantum encryption that can work over longer distances between multiple parties.
      16 years ago by @gwpl
       
       
    •  

      MIT researcher Seth Lloyd believes that a new architecture for quantum random access memory (QRAM) could be used to reduce the energy wasted by random access memory (RAM) as well as for completely anonymous Internet searchers. Classical computing requires the use of RAM to retrieve information, but RAM design is wasteful and subject to interference, Lloyd says. Lloyd worked with Vittorio Giovannetti at the NEST-CNR-INFM in Pisa, Italy, and Lorenzo Maccone at the University of Pavia, Italy, to create a system that works as QRAM. Lloyd says their QRAM architecture was discovered when his colleagues and him were researching how to make QRAM work on classical RAM design. He says QRAM is a "sneakier" way of accessing RAM. In traditional RAM, the first bit of an address throws two switches, the second throws four, and so on, Lloyd says. With QRAM, "all the bits of the address only interact with two switches," Lloyd says. The energy saved using QRAM is not enough to offset the larger energy problems associated with classical computing, and Lloyd says QRAM is slower than RAM. However, he says QRAM's benefits can be applied to quantum Internet searches. "If you had a quantum Internet, then this would be useful," he says. "This offers a huge decrease in energy used and an increase in robustness." For this to work, Lloyd says "dark fiber" is needed, and although it is already being used for some classical communications, a quantum Internet would need more.
      16 years ago by @gwpl
       
        acm_technews
         
         
      •  

        According to a recent survey from Merrill Lynch, 16% of the Baby Boomer workforce is looking for part-time work, and 42% will only take jobs that will allow them time off for leisure. Similar types of findings across all demographics are forcing companies to re-evaluate the flexibility options that they offer employees, especially as the so-called war for talent intensifies. While organizations recognize that inflexible work arrangements are a primary reason top talent leaves an organization, the actual implementation of these flexible work arrangements can be difficult to implement. As a guide, the article provides a review of flexible work arrangements at six different companies. When it comes to implementing a flexible work arrangement, a number of conditions prompt organizations to reconfigure their work plans. For example, the company could be losing market share, experiencing a deteriorating bottom line or facing a chronic shortage of talent. While there may be many reasons for an organization to embrace more flexible work situations for employees, common arrangements include flex scheduling that accommodates doctor appointments or school visits. Other arrangements include telecommuting one or more days per week; compressing workweeks from five days to four or three days per week; and job sharing.
        16 years ago by @gwpl
         
          acm_technews
           
           
        •  

          An Interview With Bjarne Stroustrup - Dr. Dobb's Journal (03/27/08) Buchanan, James C++ creator Bjarne Stroustrup says in an interview that next-generation programmers need a thorough education that covers training and understanding of algorithms, data structures, machine architecture, operating systems, and networking. "I think what should give is the idea that four years is enough to produce a well-rounded software developer: Let's aim to make a five- or six-year masters the first degree considered sufficient," he says. Before writing a software program, Stroustrup recommends that a programmer consult with peers and potential users to get a clear perspective of the problem domain, and then attempt to build a streamlined system to test the design's basic ideas. Stroustrup says he was inspired to create a first programming course to address what he perceived as a lack of basic skills for designing and implementing quality software among computer science students, such as the organization of code to ensure it is correct. "In my course I heavily emphasize structure, correctness, and define the purpose of the course as 'becoming able to produce code good enough for the use of others,'" he says. Stroustrup thinks programming can be vastly improved, especially by never losing sight of how important it is to produce correct, practical, and well-performing code. He describes a four-year undergraduate university course in computer science he helped design as having a fairly classical CS program with a slightly larger than usual software development project component in the first two years of study. Courses would cover hardware and software, discrete math, algorithms and data structures, operating and network systems, and programming languages, while a "programming studio" would be set up to expose students to group projects and project management.
          16 years ago by @gwpl
           
           
        •  

          University of California, Berkeley professor of electrical engineering and computer sciences Richard Karp has been named a laureate of the 2008 Kyoto Prize, Japan's equivalent of the Nobel Prize, awarded by the Inamori Foundation. Karp is being recognized for his lifetime achievements in computer theory. A senior research scientist at the International Computer Science Institute in Berkeley, he is considered one of the world's leading computer theorists. Karp's work has significantly advanced the theory of NP-completeness, conceived in 1971 by former UC Berkeley math professor Stephen Cook. Karp developed a standard method for characterizing combinatorial problems into classes and identifying their level of intractability. Combinatorial problems that are NP-complete are the most difficult to solve. "Karp's theory streamlined algorithm design for problem-solving, accelerated algorithm engineering, and brought computational complexity within the scope of scientific research," says the Inamori Foundation. NP-completeness theory has become a cornerstone in modern theoretical computer science, and in the 1980s Cook and Karp received an ACM A.M. Turing Award for their contributions to the concept of NP-completeness. Karp has recently focused on bioinformatics and computational biology, including the development of algorithms for constructing various kinds of physical maps of DNA targets, and methods for classifying biological samples on the basis of gene expression data.
          16 years ago by @gwpl
           
            acm_technews
             
             
          •  

            Most people today are only users of the information technology systems provided, making changes only when prompted, using "creativity" tools that stifle innovation, and accepting failures, disappointments, and crashes as inevitable and expected, writes Bill Thompson. In general, he says users accept the lack of programming tools or encouragement to engage in writing code, possibly because of the increasing complexity of modern computer systems. With so many users completely ignorant on how to program, it becomes difficult to have a serious debate about the core technical issues that affect the development and deployment of IT systems in our lives. The applications that support all aspects of society are all built by programmers, and there is a startling lack of programmers entering the software industry. Universities have seen applications for computer science degrees drop off, and computing is considered a non-essential subject in high school. Thompson says children need to see that programming is a useful skill that can be applied to a variety of careers. He says if more children were provided with suitable languages and tools for programming at school or at home, there would be at least some chance that those with an aptitude for coding would discover it early enough to become interested in the field.
            16 years ago by @gwpl
             
             
          •  

            The use of organic and chemical materials to perform digital signal processing without electrical currents could be the next major technological revolution, say Northwestern professors Sotirios Tsaftaris and Aggelos Katsaggelos. Their research includes studying the use of DNA for digital signal processing, as DNA strands can be used to input and process elements, and DNA is an excellent medium for data storage. Digital samples can be recorded in DNA, which can be kept in a liquid form in test tubes to save space. DNA can also be easily replicated using common laboratory techniques, creating a database that could be easily searched, no matter how large. Over the past 10 years scientists and engineers have experimented with different materials for performing signal processing, possibly leading to a "not-so-electric future" of digital signal processing, according to Tsaftaris and Katsaggelos. For example, artist and scientist Cameron Jones discovered that fungi grown on CDs causes the optically recorded sound to be distorted by the fungi, and that the fungi growth patterns were dependent on the optical grooves recorded on the CD. Meanwhile, in 2005, a group of E. coli cells were modified to react to light and were able to perform edge detection of an image, a basic processing task.
            16 years ago by @gwpl
             
             
          •  

            The Replicating Rapid-prototyper printer (RepRap) is an open source, self-copying 3D printer that works by building objects in layers of plastic, primarily polylactic acid, a bio-degradable polymer made from lactic acid. Unlike existing prototyping printers, RepRap can replicate and update itself, including printing its own parts, says RepRap software developer Vik Olliver. The RepRap development team, is spread throughout New Zealand, the United Kingdom, and the United States. By making the project open source, the team hopes to be able to continue to improve the machine until it can do what people want it to do. Improvements received by the team are then sent back to users, allowing RepRap to evolve as a whole. A recent feature added to RepRap are heads that can be changed for different kinds of plastic. Olliver says a head that deposits low melting-point metal is in development, which means low melting-point metal could be put inside higher melting-point plastic, allowing for the production of structures such as motors. RepRap could also allow people to build circuits in 3D and in various shapes. Having the machine be able to copy itself is the most useful feature the team can give it and is the primary goal of the project, Olliver says.
            16 years ago by @gwpl
             
             
          •  

            Without significant new investment, the Internet's current network architecture will reach the limits of its capacity by 2010, warned AT&T's Jim Cicconi at the Westminster eForum on Web 2.0 in London. "The surge in online content is at the center of the most dramatic changes affecting the Internet today," Cicconi says. "In three years' time, 20 typical households will generate more traffic than the entire Internet today." Cicconi says at least $55 billion in investments are needed in new infrastructure over the next three years in the United States alone, and $130 billion worldwide. The "unprecedented new wave of broadband traffic" will increase fifty-fold by 2015, Cicconi predicts, adding that AT&T will invest $19 billion to maintain its network and upgrade the core of its network. Cicconi adds that more demand for high-definition video will put an increasing strain on the Internet's infrastructure, noting that eight hours of video is loaded onto YouTube every minute, and that HD video consumes seven to 10 times more bandwidth than normal video. "Video will be 80 percent of all traffic by 2010, up from 30 percent today," he says.
            16 years ago by @gwpl
             
              acm_technews
               
               
            •  

              Music professors Clifton Callender at Florida State University, Ian Quinn at Yale University, and Dmitri Tymoczko at Princeton University have developed a new way of analyzing and categorizing music using the complex mathematics found in music. The new method, called "geometrical music theory," looks at sequences of notes, chords, rhythms, and scales, and categorizes them so they can be grouped into "families." The families can be given a mathematical structure that can be represented by points in complex geometrical spaces, similar to x-y graphing used in algebra. Different categorizations produce unique geometrical spaces, reflecting the various ways musicians in different times understood music. The researchers say that having tools for conceptualizing music could lead to a variety of applications, such as creating new instruments, new musical toys, and new visualization tools. Tymoczko says the most satisfying part for him is being able to see the logical structure that links many different musical concepts. "To some extent, we can represent the history of music as a long process of exploring different symmetries and different geometries," he says.
              16 years ago by @gwpl
               
                acm_technews
                 
                 
              •  

                Experts at FutureNet, an annual conference held to address communications services, say the Internet architecture will face severe challenges over the next few years that could significantly strain the Web's effectiveness. One of the most prominent issues facing the Internet is the impending shortage of IP addresses, which some forecasters say could occur within the next few years. IPv4 offers about 4.7 billion possible IP addresses, but it is running out of capacity. Juniper's Ron Bonica says there are three likely solutions to this problem. The first is to sick with IPv4, which would create some immediate problems with the impending shortage of IP addresses but would also lead to the creation of an IP address trading system through which companies and individuals that own an excessive number of addresses could sell them at market value. Another possibility would be a rapid deployment of IPv6, the next generation Internet Protocol that is capable of supporting several billion more addresses than IPv4. Bonica says many companies and organizations are reluctant to make the switch because it will require significant investments on the part of end users and ISPs, and transition mechanisms to help make the switch have not been deployed yet. Bonica says the third option is a compromise between these two solutions that involves a gradual shift from IPv4 to IPv6. Another issue addressed FutureNet addressed was the strain more IP addresses will place on routing tables, which are not scalable and cannot adapt to exponential increases in IP addresses. "The basic, fundamental problems of scaling a network haven't been addressed in any innovative manner," says American Registry of Internet Numbers Chairman John Curran.
                16 years ago by @gwpl
                 
                  acm_technews
                   
                   
                •  

                  Optimizing the capabilities of multicore processors in all sorts of products requires bridging the chasm between processors' and software's capability, and industry sources say the long-term focus should be on figuring out a way to write code for parallel computing. "We don't even know for sure what we should be teaching, but we know we should be changing what we're teaching," says University of California, Berkeley professor David Patterson, a former president of ACM. UC Berkeley and the University of Illinois at Urbana-Champaign will split $20 million from Intel and Microsoft to underwrite Universal Parallel Computing Research Centers over the next five years, with Berkeley's share going toward the enhancement of research already done by the school's Parallel Computing Laboratory and the hiring of 50 researchers to focus on the problem of writing software for parallelism. Patterson says Berkeley has started introducing freshmen to parallel computing through classes focusing on the "map-reduce" method, while upperclassmen are being given a grounding in "sticky" parallelism issues such as load balancing and synchronization. Patterson acknowledges that an entirely new programming language may need to be invented in order to tackle the challenge of parallel computing. Brown University professor Maurice Herlihy says a more likely possibility is the evolution of parallel programming features by existing languages--a view endorsed by AMD's Margaret Lewis, who cites the necessity of interim solutions to amend legacy software written for unicore processors along with software under development. Lewis says AMD is trying to infuse parallel coding methods via compilers and code analyzers, noting that with these interim solutions "programmers aren't getting the full benefits of parallelism ... but it runs better in a multicore environment."
                  16 years ago by @gwpl
                   
                    acm_technews
                     
                     
                  •  

                    A veteran programmer outlines the key differences between natural programmers and career programmers. While both types of programmers possess the same amount of talent and drive, they have vastly different approaches to completing their work. While some programmers are better at researching problems and developing cost-effective solutions, others have a natural instinct for arriving at innovative solutions. Some programmers love what they do, while others are more interested in the bottom line of the business. Natural programmers are able to make quick associations between very different topics. As a result, they are able to make the jump from code to real life application quickly. Natural programmers realize that there are many ways to do things correctly and several different ways to solve the same problem. While natural programmers understand the need for a system of rules within the workplace, they tend to treat authority with less respect than their career programmer peers. Moreover, they can be difficult to manage since they consider many office conventions (e.g. arriving at 9 am) to be arbitrary. Employers need to understand the motivations of the natural programmer and the type of office environment in which they are likely to thrive. They are not driven primarily by monetary compensation, but by the ability to work with interesting technologies and challenging projects. They tend to respect individuals within the organization who can teach them new technologies. Finally, they thrive when they can downplay the significance of status reports, QA forms, documentation, and timesheets.
                    16 years ago by @gwpl
                     
                      acm_technews
                       
                       
                    •  

                      Steve Jobs' presentation at the opening session of Apple's Worldwide Developers Conference included a description of the next version of the Mac OS X operating system, dubbed Snow Leopard, which will be designed for use with parallel processors. Jobs says Apple will find a solution to the problem of programming the new generation of parallel chips efficiently. He says Apple will focus on "foundational features" that will be the basis for a future version of the Mac operating system. At the core of Snow Leopard will be a parallel-programming technology code-named Grand Central. Snow Leopard will utilize the computer power inherent in graphics processors that are now used in tandem with microprocessors in almost all personal and mobile computers. Jobs also described a new processing standard that Apple is proposing called Open Computing Language (OpenCL), which is intended to refocus graphics processors on standard computing functions. "Basically it lets you use graphics processors to do computation," Jobs says. "It's way beyond what Nvidia or anyone else has, and it's really simple."
                      16 years ago by @gwpl
                       
                       
                    •  

                      Now that IBM's RoadRunner supercomputer has broken the petaflop barrier, reaching more than one thousand trillion sustained floating-point operations per second, supercomputer developers say the next step is an exascale system capable of a million trillion calculations per second, a thousand times faster than a petaflop. At the upcoming International Supercomputing Conference in Dresden, Germany, University of Tennessee professor Jack Dongarra will give a presentation on exaflop systems in the year 2019. Dongarra says performance gains are following a predictable path, with the first gigaflop system being built 22 years ago. Dongarra says there will be exaflop computing in 11 years, and that by then every system on the Top500 computing list will be at least a petaflop. He says the greatest achievement with the RoadRunner system is the programming that allows the system to utilize different processor technologies. To achieve exascale systems, Dongarra says developers will have to create new programming languages and algorithms that can calculate at high degrees of concurrency to complete calculations quickly. The difficulty in reaching that level of programming, and changing to new methods, could be the roadblock that prevents exaflop computing from being realized in a similar timeline, he says.
                      16 years ago by @gwpl
                       
                       
                    •  

                       
                    •  

                      In "Augmenting Human Intellect: A Conceptual Framework," Doug Engelbart, head of the Augmentation Research Center at Stanford Research Institute, presented a philosophy that favored efficiency over ease-of-use in human-computer interaction, notes Richard Monson-Haefel. In essence, Engelbart felt that basing computer interactions on the most efficient systems was the best way to achieve an optimal human-computer symbiosis. Monson-Haefel thinks the best embodiment of Engelbart's views is his five-finger keyboard, which is designed for use with one hand and carries out very rapid data entry and computer interactions when combined with a computer mouse, which Engelbart also conceived of. The keyboard-mouse combination was very tough to learn, which points to the crux of Engelbart's dilemma: More efficient and potentially more powerful human-computer interfaces have a very steep learning curve. Monson-Haefel says the modern approach to human-computer interaction stresses ease-of-use and usability without training, which runs counter to Engelbart's philosophy, which led to some of the most exceptional computer technologies in use today. The author does not think Engelbart's preference for efficiency is a completely unsound notion, and he reasons that "perhaps, like the violin, people could reach a new level of synergy with computers if they followed Engelbart's philosophy and focused on efficiency over ease-of-use."
                      16 years ago by @gwpl
                       
                       

                    publications  229