BibSonomy

The blue social bookmark and publication sharing system.

( en | de | ru )

 

group
  • tag
  • user
  • group
  • author
  • concept
  • BibTeX key
  • search
uw_ws12_web2.0
  • sign in
  • register
  • groups
  • genealogy
  • popular 
    • posts
    • tags
    • authors
    • concepts
    • discussions
  • sign in
  • register

Login

Log in with your username.

@

I've lost my password.


Log in with your OpenID-Provider.

  • Other OpenID-Provider
  1. group
  2. uw_ws12_web2.0
  3. generative model models

Publication title

bookmarks  (hide)1
  • display
  • all
  • bookmarks only
  • bookmarks per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • sort by
  • added at
  • title
  • RSS
  • BibTeX
  • XML

  •  

     
    1Generating Large Images from Latent Vectors | 大トロ
     

    http://blog.otoro.net/2016/04/01/generating-large-images-from-latent-vectors/
    7 years ago by @becker
    show all tags
    • variational
    • models
    • autoencoder
    • auto
    • latent
    • va
    • encoder
    • model
    • vectors
    • generative
     
      variationalmodelsautoencoderautolatentvaencodermodelvectorsgenerative
      copydelete
      • community post
      • history of this post
       
       
    • ⟨⟨
    • ⟨
    • 1
    • ⟩
    • ⟩⟩

    publications  (hide)2  
    • display
    • all
    • publications only
    • publications per page
    • 5
    • 10
    • 20
    • 50
    • 100
    • sort by
    • added at
    • title
    • author
    • publication date
    • entry type
    • help for advanced sorting...
    • RSS
    • BibTeX
    • RDF
    • more...

    •  

       
      1Machine learning for perturbational single-cell omics
       

      Y. Ji, M. Lotfollahi, F. Wolf, and F. Theis. Cell Systems, 12 (6): 522--537 (2021)
      4 years ago by @becker
      show all tags
      • models
      • modeling
      • deep
      • wolf
      • perturbation
      • theis
      • learning
      • multi
      • cell
      • omics
      • background
      • machine
      • multiomics
      • review
      • survey
      • model
      • knowledge
      • single
      • generative
      • integration
       
        modelsmodelingdeepwolfperturbationtheislearningmulticellomicsbackgroundmachinemultiomicsreviewsurveymodelknowledgesinglegenerativeintegration
        copydeleteadd this publication to your clipboard
        • community post
        • history of this post
        • URL
        • DOI
        • BibTeX
        • EndNote
        • APA
        • Chicago
        • DIN 1505
        • Harvard
        • MSOffice XML
         
         
      •  

         
        2Learning hierarchical features from deep generative models
         

        S. Zhao, J. Song, and S. Ermon. Proceedings of the 34th International Conference on Machine Learning-Volume 70, page 4091--4099. JMLR. org, (2017)
        6 years ago by @becker
        show all tags
        • models
        • nalab
        • alan
        • model
        • generative
         
          modelsnalabalanmodelgenerative
          copydeleteadd this publication to your clipboard
          • community post
          • history of this post
          • URL
          • DOI
          • BibTeX
          • EndNote
          • APA
          • Chicago
          • DIN 1505
          • Harvard
          • MSOffice XML
           
           
        • ⟨⟨
        • ⟨
        • 1
        • ⟩
        • ⟩⟩

        uw_ws12_web2.0

        @uw_ws12_web2.0

        CVexplore
        join

        browse

        • generative model models as tag from all users
        • model as concept from all users
        • generative model models as concept from all users

        related tags

        • + | nalab
        • + | modeling
        • + | deep
        • + | wolf
        • + | perturbation
        • + | theis
        • + | learning
        • + | multi
        • + | cell
        • + | omics
        • + | background
        • + | machine
        • + | multiomics
        • + | review
        • + | alan
        • + | survey
        • + | knowledge
        • + | single
        • + | integration
        • + | auto

        tags

        • inthesis
        • diss
        • navigation
        • spatial
        • geo
        • uw_ws17_ml
        • nlp
        • network
        • web
        • thema
        • mining
        • citedby:scholar:timestamp:2017-9-29
        • twitter
        • word
        • mobility
        • embeddings
        • graph
        • visualization
        • imported
        • markov
        • recommendation
        • pattern
        • model
        • analysis
        • R
        • spring
        • learning
        • subgroup
        • survey
        • neural
        • ecl
        • human
        • topic
        • folktrails
        • semantics
        • android
        • wuerzburg
        • information
        • statistics
        • randomization
        • wikipedia
        • chain
        • imported-verified
        • semantic
        • microtrails
        • evaluation
        • comparison
        • bayesian
        • citedby:scholar:timestamp:2017-4-23
        What is BibSonomy?
        Getting Started
        Browser Buttons
        Help
        Developer
        Overview
        API Documentation
        Contact & Privacy
        Contact
        Privacy & Terms of Use
        Cookies
        Report Issues
        BibSonomy Wiki
        Integration
        PUMA
        TYPO3 Extension
        WordPress Plugin
        Java REST Client
        Supported Sites
        more
        About BibSonomy
        Team
        Blog
        Mailing List
        Social Media
         Follow us on Twitter

        BibSonomy is offered by the Data Science Chair of the University of Würzburg, the Information Processing and Analytics Group of the Humboldt-Unversität zu Berlin, the KDE Group of the University of Kassel, and the L3S Research Center.