From post

28.7 A 0.00378mm2 Scalable Neural Recording Front-End for Fully Immersible Neural Probes Based on a Two-Step Incremental Delta-Sigma Converter with Extended Counting and Hardware Reuse.

, , , , , и . ISSCC, стр. 398-400. IEEE, (2021)

Please choose a person to relate this publication to

To differ between persons with the same name, the academic degree and the title of an important publication will be displayed.

 

Другие публикации лиц с тем же именем

Low-Power Organic Light Sensor Array Based on Active-Matrix Common-Gate Transimpedance Amplifier on Foil for Imaging Applications., , , , , , , , , и 2 other автор(ы). IEEE J. Solid State Circuits, 55 (9): 2553-2566 (2020)Simplistic Machine Learning-Based Air-to-Ground Path Loss Modeling in an Urban Environment., , , , и . FMEC, стр. 158-163. IEEE, (2020)20.6 Electromagnetic vibration energy harvester interface IC with conduction-angle-controlled maximum-power-point tracking and harvesting efficiencies of up to 90%., , , , , и . ISSCC, стр. 1-3. IEEE, (2015)A Fully Integrated Current-Mode Continuous-Time Delta-Sigma Modulator for Biological Nanopore Read Out., , , и . IEEE Trans. Biomed. Circuits Syst., 13 (1): 225-236 (2019)A 0.0046-mm2 Two-Step Incremental Delta-Sigma Analog-to-Digital Converter Neuronal Recording Front End With 120-mVpp Offset Compensation., , , , , , и . IEEE J. Solid State Circuits, 58 (2): 439-450 (февраля 2023)A 1.85 fA/√Hz fully integrated read-out interface for sub-pA current sensing applications., , и . ESSCIRC, стр. 356-359. IEEE, (2017)Area Constrained Multi-Source Power Management for Thermoelectric Energy Harvesting., , , , , , и . ESSCIRC, стр. 141-144. IEEE, (2019)28.7 A 0.00378mm2 Scalable Neural Recording Front-End for Fully Immersible Neural Probes Based on a Two-Step Incremental Delta-Sigma Converter with Extended Counting and Hardware Reuse., , , , , и . ISSCC, стр. 398-400. IEEE, (2021)