Cluster Analysis of North Atlantic–European Circulation Types and Links with Tropical Pacific Sea Surface Temperatures

, , , , and . Journal of Climate 21 (15): 3687-3703 (2008)


Observed atmospheric circulation over the North Atlantic–European (NAE) region is examined using cluster analysis. A clustering algorithm incorporating a “simulated annealing” methodology is employed to improve on solutions found by the conventional k-means technique. Clustering is applied to daily mean sea level pressure (MSLP) fields to derive a set of circulation types for six 2-month seasons. A measure of the quality of this clustering is defined to reflect the average similarity of the fields in a cluster to each other. It is shown that a range of classifications can be produced for which this measure is almost identical but which partition the days quite differently. This lack of a unique set of circulation types suggests that distinct weather regimes in NAE circulation do not exist or are very weak. It is also shown that the stability of the clustering solution to removal of data is not maximized by a suitable choice of the number of clusters. Indeed, there does not appear to be any robust way of choosing an optimum number of circulation types. Despite the apparent lack of preferred circulation types, cluster analysis can usefully be applied to generate a set of patterns that fully characterize the different circulation types appearing in each season. These patterns can then be used to analyze NAE climate variability. Ten clusters per season are chosen to ensure that a range of distinct circulation types that span the variability is produced. Using this classification, the effect of forcing of NAE circulation by tropical Pacific sea surface temperature (SST) anomalies is analyzed. This shows a significant influence of SST in this region on certain circulation types in almost all seasons. A tendency for a negative correlation between El Niño and an anomaly pattern resembling the positive winter North Atlantic Oscillation (NAO) emerges in a number of seasons. A notable exception is November–December, which shows the opposite relationship, with positive NAO-like patterns correlated with El Niño.


Cluster Analysis of North Atlantic–European Circulation Types and Links with Tropical Pacific Sea Surface Temperatures: Journal of Climate: Vol 21, No 15

Links and resources

BibTeX key:
search on:

Comments and Reviews  

There is no review or comment yet. You can write one!


Cite this publication