bookmarks  

    No matching posts.
  • ⟨⟨
  • ⟩⟩

publications  2  

  •  

    , , , and . IJIRIS:: International Journal of Innovative Research in Information Security, Volume V (Issue VIII): 475-485 (October 2018)1. Chalom, Edmond, Eran Asa, and Elior Biton. "Measuring image similarity: an overview of some useful applications." IEEE Instrumentation & Measurement Magazine 16.1 (2013): 24-28. 2. Chandler, Damon M. "Seven challenges in image quality assessment: past, present, and future research." ISRN Signal Processing 2013 (2013). 3. Chandler, Damon M., Md Mushfiqul Alam, and Thien D. Phan. "Seven challenges for image quality research." Human Vision and Electronic Imaging XIX. Vol. 9014. International Society for Optics and Photonics, 2014. 4. Lajevardi, Seyed Mehdi, and Zahir M. Hussain. "Zernike moments for facial expression recognition." rn 2 (2009): 3. 5. Lajevardi, Seyed Mehdi, and Zahir M. Hussain. "Higher order orthogonal moments for invariant facial expression recognition." Digital Signal Processing 20.6 (2010): 1771-1779. 6. Pass, Greg, and Ramin Zabih. "Comparing images using joint histograms." Multimedia systems 7.3 (1999): 234-240. 7. Shnain, Noor Abdalrazak, Zahir M. Hussain, and Song Feng Lu. Ä feature-based structural measure: An image similarity measure for face recognition." Applied Sciences 7.8 (2017): 786. 8. Wang, Zhou, et al. "Image quality assessment: from error visibility to structural similarity." IEEE transactions on image processing 13.4 (2004): 600-612. 9. Zhang, Lin, et al. "FSIM: a feature similarity index for image quality assessment." IEEE transactions on Image Processing20.8 (2011): 2378-2386. 10. Aljanabi, Mohammed Abdulameer, Zahir M. Hussain, and Song Feng Lu. Än entropy-histogram approach for image similarity and face recognition." Mathematical Problems in Engineering 2018 (2018). 11. Aljanabi, Mohammed Abdulameer, Noor Abdalrazak Shnain, and Song Feng Lu. Än image similarity measure based on joint histogram—Entropy for face recognition." Computer and Communications (ICCC), 2017 3rd IEEE International Conference on. IEEE, 2017. 12. Hwang, Sun-Kyoo, and Whoi-Yul Kim. Ä novel approach to the fast computation of Zernike moments." Pattern Recognition 39.11 (2006): 2065-2076. 13. Canny, John. Ä computational approach to edge detection." IEEE Transactions on pattern analysis and machine intelligence 6 (1986): 679-698. 14. Picard, C. F. "The use of information theory in the study of the diversity of biological populations." Proc. Fifth Berk. Symp. IV. 1979. 15. Ponomarenko, Nikolay, et al. "TID2008-a database for evaluation of full-reference visual quality assessment metrics." Advances of Modern Radioelectronics 10.4 (2009): 30-45. 16. Ninassi, A., P. Le Callet, and F. Autrusseau. "Subjective quality assessment-IVC database." online http://www. irccyn. ec-nantes. fr/ivcdb (2006). 17. “Laboratories, A.T. The Database of Faces,” http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html 18. “FEI Face Database,” http://fei.edu.br/∼cet/facedatabase.html.
    6 years ago by @ijiris
    (0)
     
     
  •  

    , , , and . IJIRIS:: International Journal of Innovative Research in Information Security, Volume V (Issue VII): 453-464 (September 2018)1. Hassan, Asmhan F., Dong Cailin, and Zahir M. Hussain. Än information- theoretic image quality measure: Comparison with statistical similarity." (2014). 2. Hashim, A.N. and Z.M. Hussain. Novel imagedependent quality assessment measures. in J. Comput. 2014. Citeseer. 3. Wang, Z., et al., Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 2004. 13(4): p. 600-612. 4. Sampat, M.P., Z. Wang, S. Gupta, A.C. Bovik and M.K. Markey, 2009. Complex wavelet structural similarity: A new image similarity index. IEEE Trans. Image Proc., 18: 2385-2401. DOI:10.1109/TIP.2009.2025923 5. Dan, L., D.Y. Bi and Y. Wang, 2010. Image quality assessment based on DCT and structural similarity. Proceedings of the 6th International Conference on Wireless Communications Networking and Mobile Computing, Sept. 23-25, IEEE Xplore Press, Chengdu, pp: 1-4. DOI: 10.1109/WICOM.2010.5600663 6. Zhang, L., et al., FSIM: A feature similarity index for image quality assessment. IEEE transactions on Image Processing, 2011. 20(8): p. 2378-2386. 7. Zhao, W., et al., Face recognition: A literature survey. ACM computing surveys (CSUR), 2003. 35(4): p. 399-458. 8. Barrett, W.A. A survey of face recognition algorithms and testing results. in Signals, Systems & Computers, 1997. Conference Record of the Thirty-First Asilomar Conference on. 1997. IEEE. 9. Hu, Y. and Z. Wang. A similarity measure based on Hausdorff distance for human face recognition. in Pattern Recognition, 2006. ICPR 2006. 18th International Conference on. 2006. IEEE. 10. Hashim, A.N. and Z. Hussain, Local and semi-global feature-correlative techniques for face recognition. IJACSA, 2014. 11. Hassan, A.F., Z. Hussain, and D. Cai-lin, An Information-Theoretic Measure for Face Recognition: Comparison with Structural Similarity. IJARAI. 2014. 12. Shnain, N.A., Z.M. Hussain, and S.F. Lu, A Feature-Based Structural Measure: An Image Similarity Measure for Face Recognition. Applied Sciences, 2017. 7(8): p. 786. 13. Shnain, Noor Abdalrazak, Song Feng Lu, and Zahir M. Hussain. "HOS image similarity measure for human face recognition." Computer and Communications (ICCC), 2017 3rd IEEE International Conference on. IEEE, 2017. 14. Aljanabi, Mohammed Abdulameer, Noor Abdalrazak Shnain, and Song Feng Lu. Än image similarity measure based on joint histogram—Entropy for face recognition." Computer and Communications (ICCC), 2017 3rd IEEE International Conference on. IEEE, 2017. 15. Teh, C.-H. and R.T. Chin, On image analysis by the methods of moments. IEEE Transactions on pattern analysis and machine intelligence, 1988. 10(4): p. 496-513. 16. Lajevardi, S.M. and Z.M. Hussain, Higher order orthogonal moments for invariant facial expression recognition. Digital Signal Processing, 2010. 20(6): p. 1771-1779. 17. Farajzadeh, N., K. Faez, and G. Pan, Study on the performance of moments as invariant descriptors for practical face recognition systems. IET Computer Vision, 2010. 4(4): p. 272-285. 18. Ono, A., Face recognition with Zernike moments. Systems and Computers in Japan, 2003. 34(10): p. 26-35. 19. Singh, C., N. Mittal, and E. Walia, Face recognition using Zernike and complex Zernike moment features. Pattern Recognition and Image Analysis, 2011. 21(1): p. 71-81. 20. Shi, Z., G. Liu, and M. Du, Rotary face recognition based on pseudo Zernike moments. Emerging Comput. Inf. Technol. Educ. Adv. Intell. Soft Comput, 2012. 146: p. 641-646. 21. Wang, Z. and E.P. Simoncelli. Translation insensitive image similarity in complex wavelet domain. in Acoustics, Speech, and Signal Processing, 2005. Proceedings.(ICASSP'05). IEEE International Conference on. 2005. IEEE. 22. Hwang, S.-K. and W.-Y. Kim, A novel approach to the fast computation of Zernike moments. Pattern Recognition, 2006. 39(11): p. 2065-2076. 23. Canny, J., A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence, 1986(6): p. 679-698. 24. N. Ponomarenko, V. Lukin, A. Zelensky, K. Egiazarian, M. Carli, and F. Battisti, “TID2008—A database for evaluation of full-reference visual quality assessment metrics,” Adv. Modern Radioelectron., vol. 10, pp. 30–45, 2009. 25. AT&T Laboratories, The Database of Faces, Cambridge online, ©2002 accessed 10/09/2014. Available from: http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html 26. Tom Fawcett, Än introduction to ROC analysis," Pattern Recognition Letters, 2006. 27. Seedahmed S. Mahmoud, Zahir M. Hussain, and Peter O’Shea, “A Geometrical-Based Microcell Mobile Radio Channel Model,” Wireless Networks, Springer, vol. 12, no. 5, pp. 653-664, 2006. 28. Seedahmed S. Mahmoud, Zahir M. Hussain, and Peter O’Shea, “Geometrical Model for Mobile Radio Channel with Hyperbolically Distributed Scatterers,” IEEE International Conference on Communication Systems (ICCS 2002), Singapore, Nov. 2002. 29. Yuu-Seng Lau and Zahir M. Hussain, “A New Approach in Chaos Shift Keying for Secure Communication,” Proceedings of the IEEE International conference on Information Theory and Its Applications (ICITA’2005), Sydney, Australia, 4-7 Jul. 2005..
    6 years ago by @ijiris
    (1)
     
     
  • ⟨⟨
  • 1
  • ⟩⟩