Article,

A concept of hemopoietic regulation and its biomathematical realization

, , and .
Blood cells, 14 (2-3): 411–429 (1988)

Abstract

Although the amount of experimental data on the behavior of the hemopoietic system after various perturbations is considerable, a conclusive understanding of hemopoietic regulation is still absent. In the last years, we have examined murine erythropoiesis, thrombopoiesis, granulopoiesis, and stem cell hemopoiesis by means of mathematical modeling in order to identify some of the underlying principles. Our results can be summarized in four hypotheses. 1) The regulation of hemopoiesis is governed by three interrelated control loops: autoregulation of stem cells, feedback from progenitors and precursors to the stem cells, and feedback from mature cells to progenitor and precursor cells. 2) The feedback from mature cells to the progenitor and precursor cells predominantly varies the number of cell divisions taking place during hemopoietic maturation. 3) Two distinct properties of the stem cells are regulated: their cyclic activity and their self-renewal. Both are under the control of stem cell autoregulation and the feedback from progenitors and precursors. 4) A large variance in the maturation time from the stem cells to the mature cells stabilizes the hemopoietic control. The mathematical formulation of these assumptions allows us to understand a broad range of experimental observations including recovery from stem cell damage, hypoproliferative and hyperproliferative situations, and interactions between different cell lines.

Tags

Users

  • @drtester

Comments and Reviews