Mastersthesis,

Punching Shear Feilure Analysis of Reinforced Concrete Flat Plates Using Simplified UST Failure Criterion

.
School of Engineering,Faculty of Engineering and Information Technology,Griffith University,Gold Coast Campus, (December 2002)

Abstract

Failure criteria play a vital role in the nzimerical analysis of reinforced concrete structures. The current failure criteria can be classiJied into two types, namely the empirical and theoretical failure criteria. Empirical failure criteria normally lack reasonable theoretical backgrounds, while theoretical ones either involve too many parameters or ignore the effects of intermediate principal stress on the concrete strength. Based on the octahedral shear stress model and the concrete tensile strength under the state of triaxial and uniaxial stress, a new failure criterion, that is, the simplzjed uniJied strength theory (UST), is developed by simplzfiing the Jive-parameter UST for the analysis of reinforced concrete structures. According to the simplified UST failure criterion, the concrete strength is injlz~encedb y the maximum and intermediate principal shear stresses together with the corresponding normal stresses. Moreover, the effect of hydrostatic pressure on the concrete strength is also taken into account. The failure criterion involves three concrete strengths, namely the uniaxial tensile and compressive strengths and the equal biaxial compressive strength. In the numerical analysis, a degenerated shell element with the layered approach is adopted for the simulation of concrete structures. In the layered approach, concrete is divided into several layers over the thickness of the elements and reinforcing steel is smeared into the corresponding number of layers of equivalent thickness. In each concrete layer, three-dimensional stresses are calculated at the integration points. For the material modelling, concrete is treated as isotropic material until cracking occurs. Cracked concrete is treated as an orthotropic material incorporating tensionstiffening and the reduction of cracked shear stiffness. Meanwhile, the smeared craclc model is employed. The bending reinforcements and the stirrups are simzilated using a trilinear material model. To verzfi the correctness of the simpliJied UST failure criterion, comparisons are made with concrete triaxial empirical results as well as with the Kupfer and the Ottosen failure criteria. Finally, the proposed failure criterion is used for the flexural analysis of simply supported reinforced concrete beams. Also conducted are the punching shear analyses of single- and multi-column-slab connections and of half-scale flat plate models. In view oj. its accuracy and capabilities, the sirnpliJied UST failure criterion may be used to analyse beam- and slab-type reinforced concrete structures.

Tags

Users

  • @v.vitanov

Comments and Reviews