Article,

Efficient and Hysteresis-Free Perovskite Solar Cells Based on a Solution Processable Polar Fullerene Electron Transport Layer

, , , , , and .
Advanced Energy Materials, (2017)
DOI: 10.1002/aenm.201701144

Abstract

Fullerene derivatives, which possess extraordinary geometric shapes and high electron affinity, have attracted significant attention for thin film technologies. This study demonstrates an important photovoltaic application using carboxyl-functionalized carbon buckyballs, C60 pyrrolidine tris-acid (CPTA), to fabricate electron transport layers (ETLs) that replace traditional metal oxide-based ETLs in efficient and stable n-i-p-structured planar perovskite solar cells (PSCs). The uniform CPTA film is covalently anchored onto the surface of indium tin oxide (ITO), significantly suppressing hysteresis and enhancing the flexural strength in the CPTA-modified PSCs. Moreover, solution-processable CPTA-based ETLs also enable the fabrication of lightweight flexible PSCs. The maximum-performing device structures composed of ITO/CPTA/CH3NH3PbI3/2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD)/Au yield power conversion efficiencies of more than 18% on glass substrates and up to 17% on flexible substrates. These results indicate that the CPTA layers provide new opportunities for solution-processed organic ETLs by substantially simplifying the procedure for fabricating PSCs for portable applications.

Tags

Users

  • @bretschneider_m

Comments and Reviews