Misc,

The Mass-Metallicity Relation at z=8: Direct-Method Metallicity Constraints and Near-Future Prospects

, , , , , , and .
(2020)cite arxiv:2006.02447Comment: 11 pages, 3 figures, 3 tables. Submitted to ApJ.

Abstract

Physical properties of galaxies at z>7 are of interest for understanding both the early phases of star formation and the process of cosmic reionization. Chemical abundance measurements offer valuable information on the integrated star formation history, and hence ionizing photon production, as well as the rapid gas accretion expected at such high redshifts. We use reported measurements of O III 88$\mu$m emission and star formation rate to estimate gas-phase oxygen abundances in five galaxies at z=7.1-9.1 using the direct T_e method. We find typical abundances 12+log(O/H) = 7.9 ($\sim$0.2 times the solar value) and an evolution of 0.9$\pm$0.5 dex in oxygen abundance at fixed stellar mass from z$\simeq$8 to 0. These results are compatible with theoretical predictions, albeit with large (conservative) uncertainties in both mass and metallicity. We assess both statistical and systematic uncertainties to identify promising means of improvement with the Atacama Large Millimeter Array (ALMA) and the James Webb Space Telescope (JWST). In particular we highlight O III 52$\mu$m as a valuable feature for robust metallicity measurements. Precision of 0.1-0.2 dex in T_e-based O/H abundance can be reasonably achieved for galaxies at z$\approx$5-8 by combining O III 52$\mu$m with rest-frame optical strong lines. It will also be possible to probe gas mixing and mergers via resolved T_e-based abundances on kpc scales. With ALMA and JWST, direct metallicity measurements will thus be remarkably accessible in the reionization epoch.

Tags

Users

  • @gpkulkarni

Comments and Reviews