Article,

Voltage-tunable Majorana bound states in time-reversal symmetric bilayer quantum spin Hall hybrid systems

, , , , and .
Phys. Rev. B, 100 (16): 165420 (Oct 25, 2019)cite arxiv:1904.07166.
DOI: 10.1103/PhysRevB.100.165420

Abstract

We investigate hybrid structures based on a bilayer quantum spin Hall system in proximity to an s-wave superconductor as a platform to mimic time-reversal symmetric topological superconductors. In this bilayer setup, the induced pairing can be of intra- or inter-layer type, and domain walls of those different types of pairing potentials host Kramers partners (time-reversal conjugate pairs) of Majorana bound states. Interestingly, we discover that such topological interfaces providing Majorana bound states can also be achieved in an otherwise homogeneous system by a spatially dependent inter-layer gate voltage. This gate voltage causes the relative electron densities of the two layers to vary accordingly which suppresses the inter-layer pairing in regions with strong gate voltage. We identify particular transport signatures (zero-bias anomalies) in a five-terminal setup that are uniquely related to the presence of Kramers pairs of Majorana bound states.

Tags

Users

  • @ctqmat

Comments and Reviews