Article,

Spatial distribution of neutral oxygen vacancies on ZnO nanowire surfaces: An investigation combining confocal microscopy and first principles calculations

, , , , and .
Journal of Applied Physics, 114 (3): 034901 (July 2013)

Abstract

A qualitative approach using room-temperature confocal microscopy is employed to investigate the spatial distribution of shallow and deep oxygen vacancy (Vo) concentrations on the polar (0001) and non-polar (10ī0) surfaces of zinc oxide (ZnO) nanowires (NWs). Using the spectral intensity variation of the confocal photoluminescence of the green emission at different spatial locations on the surface, the Vo concentrations of an individual ZnO NW can be obtained. The green emission at different spatial locations on the ZnO NW polar (0001) and non-polar (10ī0) surfaces is found to have maximum intensity near the NW edges, decreasing to a minimum near the NW center. First-principles calculations using simple supercell-slab (SS) models are employed to approximate/model the defects on the ZnO NW (10ī0) and (0001) surfaces. The highly accurate density functional theory (DFT)-based full-potential linearized augmented plane-wave plus local orbitals (FP-LAPW + lo) method is used to compute the defect formation energy (DFE) of the SSs. Previously, using these SS models, it was demonstrated through the FP-LAPW + lo method that in the presence of oxygen vacancies at the (0001) surface, the phase transformation of the SSs in the graphite-like structure to the wurtzite lattice structure will occur even if the thickness of the graphite-like SSs are equal to or less than 4 atomic graphite-like layers Wong et al., J. Appl. Phys. 113, 014304 (2013). The spatial profile of the neutral Vo DFEs from the DFT calculations along the ZnO 0001 and 10ī0 directions is found to reasonably explain the spatial profile of the measured confocal luminescence intensity on these surfaces, leading to the conclusion that the green emission spectra of the NWs likely originate from neutral oxygen vacancies. Another significant result is that the variation in the calculated DFE along the ZnO 0001 and 10ī0 directions shows different behaviors owing to the non-polar and polar nature of these SSs.

Tags

Users

  • @nanozno

Comments and Reviews