Misc,

An analytical model for galaxy metallicity: What do metallicity relations tell us about star formation and outflow?

, , and .
(2015)cite arxiv:1506.02036Comment: 9 pages, 4 figures; accepted for publication in ApJ.

Abstract

We develop a simple analytical model that tracks galactic metallicities governed by star formation and feedback to gain insight from the observed galaxy stellar mass-metallicity relations over a large range of stellar masses and redshifts. The model reveals the following implications of star formation and feedback processes in galaxy formation. First, the observed metallicity relations provide a stringent upper limit for the averaged outflow mass-loading factors of local galaxies, which is ~20 for M_*~10^9Msun galaxies and monotonically decreases to ~1 for M_*~10^11Msun galaxies. Second, the inferred upper-limit for the outflow mass-loading factor sensitively depends on whether the outflow is metal-enriched with respect to the ISM metallicity. If half of the metals ejected from SNe leave the galaxy in metal-enriched winds, the outflow mass-loading factor for galaxies at any mass can barely be higher than ~10, which puts strong constraints on galaxy formation models. Third, the relatively lower stellar-phase to gas-phase metallicity ratio for lower-mass galaxies indicate that low-mass galaxies are still rapidly enriching their metallicities in recent times, while high-mass galaxies are more settled, which seems to show a downsizing effect in the metallicity evolution of galaxies. The analysis presented in the paper demonstrates the importance of accurate measurements of galaxy metallicities and the cold gas fraction of galaxies at different redshifts for constraining star formation and feedback processes, and demonstrates the power of these relations in constraining the physics of galaxy formation.

Tags

Users

  • @miki

Comments and Reviews