Misc,

A Versatile Family of Galactic Wind Models

, , and .
(2015)cite arxiv:1509.07130Comment: 13 pages, 14 figures, submitted to ApJ.

Abstract

We present a versatile family of model galactic outflows including non-uniform mass and energy source distributions, a gravitational potential from an extended mass source, and radiative losses. The model easily produces steady-state wind solutions for a range of mass-loading factors, energy-loading factors, galaxy mass and galaxy radius. We find that, with radiative losses included, highly mass-loaded winds must be driven at high central temperatures, whereas low mass-loaded winds can be driven at low temperatures just above the peak of the cooling curve, meaning radiative losses can drastically affect the wind solution even for low mass-loading factors. By including radiative losses, we are able to show that subsonic flows can be ignored as a possible mechanism for expelling mass and energy from a galaxy compared to the more efficient transonic solutions. Specifically, the transonic solutions with low mass-loading and high energy-loading are the most efficient. Our model also produces low-temperature, high-velocity winds that could explain the prevalence of low-temperature material in observed outflows. Finally, we show that our model, unlike the well-known Chevalier & Clegg (1985) model, can reproduce the observed linear relationship between wind X-ray luminosity and star formation rate (SFR) over a large range of SFR from $1-1000$ M$_ødot$/yr assuming the wind mass-loading factor is higher for low-mass, and hence, low-SFR galaxies. We also constrain the allowed mass-loading factors that can fit the observed X-ray luminosity vs. SFR trend, further suggesting an inverse relationship between mass-loading and SFR as explored in advanced numerical simulations.

Tags

Users

  • @miki

Comments and Reviews