Article,

Tip-localized Ca -permeable channels control pollen tube growth via kinase-dependent R- and S-type anion channel regulation

, , , , , , , and .
New Phytologist, 218 (3): 1089-1105 (2018)Sp. Iss. SI Gc9of Times Cited:41 Cited References Count:76.
DOI: 10.1111/nph.15067

Abstract

Pollen tubes (PTs) are characterized by having tip-focused cytosolic calcium ion (Ca2+) concentration (Ca2+(cyt)) gradients, which are believed to control PT growth. However, the mechanisms by which the apical Ca2+(cyt) orchestrates PT growth are not well understood. Here, we aimed to identify these mechanisms by combining reverse genetics, cell biology, electrophysiology, and live-cell Ca2+ and anion imaging. We triggered Ca2+-channel activation by applying hyperpolarizing voltage pulses and observed that the evoked Ca2+(cyt) increases were paralleled by high anion channel activity and a decrease in the cytosolic anion concentration at the PT tip. We confirmed a functional correlation between these patterns by showing that inhibition of Ca2+-permeable channels eliminated the Ca2+(cyt) increase, resulting in the abrogation of anion channel activity via Ca2+-dependent protein kinases (CPKs). Functional characterization of CPK and anion-channel mutants revealed a CPK2/20/6-dependent activation of SLAH3 and ALMT12/13/14 anion channels. The impaired growth phenotypes of anion channel and CPK mutants support the physiological significance of a kinase- and Ca2+-dependent pathway to control PT growth via anion channel activation. Other than unveiling this functional link, our membrane hyperpolarization method allows for unprecedented manipulation of the Ca2+(cyt) gradient or oscillations in the PT tips and opens an array of opportunities for channel screenings.

Tags

Users

  • @rainerhedrich_2

Comments and Reviews