Abstract

We study the diffusion of a Brownian particle quadratically coupled to a thermally fluctuating field. In the weak-coupling limit, a path-integral formulation allows us to compute the effective diffusion coefficient in the cases of an active particle, which tends to suppress field fluctuations, and of a passive particle, which only undergoes field fluctuations. We show that the behavior is similar to what was previously found for a linear coupling: an active particle is always slowed down, whereas a passive particle is slowed down in a slow field and accelerated in a fast field. Numerical simulations show a good agreement with the analytical calculations. The examples of a membrane protein coupled to the curvature or composition of the membrane are discussed, with a focus on the room for anomalous diffusion.

Links and resources

Tags