@jvsi_all

Direct Effects of Physcion, Chrysophanol, Emodin, and Pachybasin on Germination and Appressorium Formation of the Barley ( Hordeum vulgare L.) Powdery Mildew Fungus Blumeria graminis f. sp. hordei (DC.) Speer

, , and . J Agric Food Chem, 66 (13): 3393-3401 (2018)Hildebrandt, Ulrich Marsell, Alexander Riederer, Markus eng 2018/03/21 J Agric Food Chem. 2018 Apr 4;66(13):3393-3401. doi: 10.1021/acs.jafc.7b05977. Epub 2018 Mar 22..
DOI: 10.1021/acs.jafc.7b05977

Abstract

Several anthraquinone derivatives are active components of fungicidal formulations particularly effective against powdery mildew fungi. The antimildew effect of compounds such as physcion and chrysophanol is largely attributed to host plant defense induction. However, so far a direct fungistatic/fungicidal effect of anthraquinone derivatives on powdery mildew fungi has not been unequivocally demonstrated. By applying a Formvar-based in vitro system we demonstrate a direct, dose-dependent effect of physcion, chrysophanol, emodin, and pachybasin on conidial germination and appressorium formation of Blumeria graminis f. sp. hordei (DC.) Speer, the causative agent of barley ( Hordeum vulgare L.) powdery mildew. Physcion was the most effective among the tested compounds. At higher doses, physcion mainly inhibited conidial germination. At lower rates, however, a distinct interference with appressorium formation became discernible. Physcion and others may act by modulating both the infection capacity of the powdery mildew pathogen and host plant defense. Our results suggest a specific arrangement of substituents at the anthraquinone backbone structure being crucial for the direct antimildew effect.

Links and resources

Tags