@peter.ralph

Transition from background selection to associative overdominance promotes diversity in regions of low recombination

, , , and . bioRxiv, (2019)
DOI: 10.1101/748004

Abstract

Linked selection is a major driver of genetic diversity. Selection against deleterious mutations removes linked neutral diversity (background selection, BGS, Charlesworth et al. 1993), creating a positive correlation between recombination rates and genetic diversity. Purifying selection against recessive variants, however, can also lead to associative overdominance (AOD, Ohta 1971, Zhao & Charlesworth, 2016), due to an apparent heterozygote advantage at linked neutral loci that opposes the loss of neutral diversity by BGS. Zhao & Charlesworth (2016) identified the conditions when AOD should dominate over BGS in a single-locus model and suggested that the effect of AOD could become stronger if multiple linked deleterious variants co-segregate. We present a model describing how and under which conditions multi-locus dynamics can amplify the effects of AOD. We derive the conditions for a transition from BGS to AOD due to pseudo-overdominance (Ohta & Kimura 1970), i.e. a form of balancing selection that maintains complementary deleterious haplotypes that mask the effect of recessive deleterious mutations. Simulations confirm these findings and show that multi-locus AOD can increase diversity in low recombination regions much more strongly than previously appreciated. While BGS is known to drive genome-wide diversity in humans (Pouyet et al. 2018), the observation of a resurgence of genetic diversity in regions of very low recombination is indicative of AOD. We identify 21 such regions in the human genome showing clear signals of multi-locus AOD. Our results demonstrate that AOD may play an important role in the evolution of low recombination regions of many species.

Links and resources

Tags