@sidney

Analysis of directional mutation pressure and nucleotide content in mitochondrial cytochrome b genes

, , , and . J Mol Evol, 39 (2): 160-173 (August 1994)

Abstract

We present a new approach for analyzing directional mutation pressure and nucleotide content in protein-coding genes. Directional mutation pressure, the heterogenicity in the likelihood of different nucleotide substitutions, is used to explain the increasing or decreasing guanine-cytosine content (GC%) in DNA and is represented by microD, in agreement with Sueoka (1962, Proc Natl Acad Sci USA 48:582-592). The new method uses simulation to facilitate identification of significant A+T or G+C pressure as well as the comparison of directional mutation pressure among genes, even when they are translated by different genetic codes. We use the method to analyze the evolution of directional mutation pressure and nucleotide content of mitochondrial cytochrome b genes. Results from a survey of 110 taxa indicate that the cytochrome b genes of most taxa are subjected to significant directional mutation pressure and that the gene is subject to A+T pressure in most cases. Only in the anseriform bird Cairina moschata is the cytochrome b gene subject to significant G+C pressure. The GC% at nonsynonymous codon sites decreases proportionately with increasing A+T pressure, and with a slope less than one, indicating a presence of selective constraints. The cytochrome b genes of insects, nematodes, and eumycotes are subject to extreme A+T pressures (microD = 0.123, 0.224, and 0.130) and, in parallel, the GC% of the nonsynonymous codon sites has decreased from about 0.44 in organisms that are not subjected to A+T or G+C pressure to about 0.332, 0.323, and 0.367, respectively. The distribution of taxa according to the GC% at nonsynonymous codon sites and directional mutation pressure supports the notion that variation in these parameters is a phylogenetic component.

Links and resources

Tags