Аннотация

Author SummaryDynamic systems biology models typically involve many kinetic parameters, the quantitative determination of which has been a serious obstacle to using these models. Previous work showed for a particular model that useful predictions could be extracted from a fit long before the experimental data constrained the parameters, even to within orders of magnitude. This was attributed to a “sloppy” pattern in the model's parameter sensitivities; the sensitivity eigenvalues were roughly evenly spaced over many decades. Consequently, the model behavior depended effectively on only a few “stiff” parameter combinations. Here we study the converse problem, showing that direct parameter measurements are very inefficient at constraining the model's behavior. To yield effective predictions, such measurements must be very precise and complete; even a single imprecise parameter often destroys predictivity. We also show here that the characteristic sloppy eigenvalue pattern is reproduced in 16 other diverse models from the systems biology literature. The apparent universality of sloppiness suggests that predictions from most models will be very fragile to single uncertain parameters and that collective parameters fits can often yield tight predictions with loose parameters. Together these results argue that focusing on parameter values may be a very inefficient route to useful models.

Линки и ресурсы

тэги

сообщество

  • @karthikraman
  • @peter.ralph
  • @dblp
@peter.ralph- тэги данного пользователя выделены