Misc,

Non-equilibrium chemistry and cooling in the diffuse interstellar medium I: Optically thin regime

, , and .
(2014)cite arxiv:1401.4719Comment: 25 pages, 12 figures, submitted to MNRAS. Supplementary material can be found at http://noneqism.strw.leidenuniv.nl.

Abstract

An accurate treatment of the multiphase interstellar medium (ISM) in hydrodynamic galaxy simulations requires that we follow not only the thermal evolution of the gas, but also the evolution of its chemical state, including its molecular chemistry, without assuming chemical (including ionisation) equilibrium. We present a reaction network that can be used to solve for this thermo-chemical evolution. We focus on conditions typical for the diffuse ISM, with densities of 10^-2 cm^-3 < nH < 10^4 cm^-3 and temperatures of 10^2 K < T < 10^4 K. Our model follows the evolution of all ionisation states of the 11 elements that dominate the cooling rate, along with important molecules such as H2 and CO, and the intermediate molecular species that are involved in their formation (20 molecules in total). We include chemical reactions on dust grains, thermal processes involving dust, cosmic ray ionisation and heating and photochemical reactions. In this paper we consider only gas that is optically thin, while paper II considers gas that becomes shielded from the radiation field. We verify the accuracy of our model by comparing chemical abundances and cooling functions in chemical equilibrium with the photoionisation code Cloudy. We identify the major coolants in diffuse interstellar gas to be CII, SiII and FeII, along with OI and H2 at densities nH > 10^2 cm^-3. Finally, we investigate the impact that non-equilibrium chemistry has on the cooling functions of isochorically or isobarically cooling gas. We find that, at T < 10^4 K, recombination lags increase the electron abundance above its equilibrium value at a given temperature, which can enhance the cooling rate by up to two orders of magnitude. The cooling gas also shows lower H2 abundances than in equilibrium, by up to an order of magnitude. (Abridged)

Tags

Users

  • @miki

Comments and Reviews