Article,

Magnetic air capsule robotic system: Proof of concept of a novel approach for painless colonoscopy

, , , , , , and .
Surgical Endoscopy, 26 (5): 1238--1246 (2012)
DOI: 10.1007/s00464-011-2054-x

Abstract

Background Despite being considered the most effective method for colorectal cancer diagnosis, colonoscopy takeup as a mass-screening procedure is limited mainly due to invasiveness, patient discomfort, fear of pain, and the need for sedation. In an effort to mitigate some of the disadvantages associated with colonoscopy, this work provides a preliminary assessment of a novel endoscopic device consisting in a softly tethered capsule for painless colonoscopy under robotic magnetic steering. Methods The proposed platform consists of the endoscopic device, a robotic unit, and a control box. In contrast to the traditional insertion method (i.e., pushing from behind), a "front-wheel" propulsion approach is proposed. A compliant tether connecting the device to an external box is used to provide insufflation, passing a flexible operative tool, enabling lens cleaning, and operating the vision module. To assess the diagnostic and treatment ability of the platform, 12 users were asked to find and remove artificially implanted beads as polyp surrogates in an ex vivo model. In vivo testing consisted of a qualitative study of the platform in pigs, focusing on active locomotion, diagnostic and therapeutic capabilities, safety, and usability. Results The mean percentage of beads identified by each user during ex vivo trials was 85 ± 11\%. All the identified beads were removed successfully using the polypectomy loop. The mean completion time for accomplishing the entire procedure was 678 ± 179 s. No immediate mucosal damage, acute complications such as perforation, or delayed adverse consequences were observed following application of the proposed method in vivo. Conclusions Use of the proposed platform in ex vivo and preliminary animal studies indicates that it is safe and operates effectively in a manner similar to a standard colonoscope. These studies served to demonstrate the platform's added advantages of reduced size, front-wheel drive strategy, and robotic control over locomotion and orientation. © Springer Science+Business Media, LLC 2011.

Tags

Users

  • @sassw

Comments and Reviews