Abstract

Abstract Lifetimes of the 21+ states in 44Ti, 48,50Cr, and 52Fe were determined with high accuracy exploiting the recoil distance Doppler-shift method. The reduced E2 transition strengths of 44Ti and 52Fe differ considerably from previously known values. A systematic increase in collectivity is found for the N=Z nuclei compared to neighboring isotopes. The B(E2) values along the Ti, Cr, and Fe isotopic chains are compared to shell-model calculations employing established interactions for the 0f1p shell, as well as a novel effective shell-model Hamiltonian starting from a realistic nucleon–nucleon potential. The theoretical approaches underestimate the B(E2) values for the lower-mass Ti isotopes. Strong indication is found for particle-hole cross-shell configurations, recently corroborated by similar results for the neighboring isotone 42Ca.

Tags

Users

  • @ikpcologne

Comments and Reviews