Article,

Excitonic properties of strained triple quantum-ring molecules

, and .
PHYSICAL REVIEW B, (2009)
DOI: 10.1103/PhysRevB.79.153305

Abstract

The tunneling coupling in three vertically stacked (In,Ga)As/GaAs quantum rings is investigated. With increasing inter-ring separation (d), we find that the nonuniform strain results into a crossing of the lowest-energy electron states. Strain is also responsible for an increase in the ground electron energy above the level in the single quantum ring. The ground hole energy level exhibits decrease when d decreases, which is typical for antibonding states in an unstrained structure. These effects lead to a local maximum in the dependence of the ground-state exciton energy on d. Our theoretical results compare well with recent photoluminescence measurements but deviate considerably from the calculations for flat bands in quantum-ring molecules. We conclude that the nonuniform character of the strain distribution gives rise to a peculiar exciton hybridization in self-assembled quantum-ring molecules.

Tags

Users

  • @ppgfis_ufc_br

Comments and Reviews