Article,

In vivo whole-field blood velocity measurement techniques

, , and .
Experiments in Fluids, 42 (4): 495-511 (2007)
DOI: 10.1007/s00348-007-0276-4

Abstract

In this article a number of whole-field blood velocity measurement techniques are concisely reviewed. We primarily focus on optical measurement techniques for in vivo applications, such as laser Doppler velocimetry (including time varying speckle), laser speckle contrast imaging and particle image velocimetry (including particle tracking). We also briefly describe nuclear magnetic resonance and ultrasound particle image velocimetry, two techniques that do not rely on optical access, but that are of importance to in vivo whole-field blood velocity measurement. Typical applications for whole-field methods are perfusion monitoring, the investigation of instantaneous blood flow patterns, the derivation of endothelial shear stress distributions from velocity fields, and the measurement of blood volume flow rates. These applications require individual treatment in terms of spatial and temporal resolution and number of measured velocity components. The requirements further differ for the investigation of macro-, meso-, and microscale blood flows. In this review we describe and classify those requirements and present techniques that satisfy them.

Tags

Users

  • @alex_ruff

Comments and Reviews