Misc,

Entanglement contour

, and .
(Aug 11, 2014)

Abstract

In the context of characterizing the structure of quantum entanglement in many-body systems, we introduce the entanglement contour, a tool to identify which real-space degrees of freedom contribute, and how much, to the entanglement of a region A with the rest of the system B. The entanglement contour provides a complementary, more re?fined approach to characterizing entanglement than just considering the entanglement entropy between A and B, with several concrete advantages. We illustrate this in the context of ground states and quantum quenches in fermionic quadratic systems. For instance, in a quantum critical system in \$D = 1\$ spatial dimensions, the entanglement contour allows us to determine the central charge of the underlying conformal field theory from just a single partition of the system into regions A and B, (using the entanglement entropy for the same task requires considering several partitions). In \$D 2\$ dimensions, the entanglement contour can distinguish between gapped and gapless phases that obey a same boundary law for entanglement entropy. During a local or global quantum quench, the time-dependent contour provides a detailed account of the dynamics of entanglement, including propagating entanglement waves, which offers a microscopic explanation of the behavior of the entanglement entropy as a function of time.

Tags

Users

  • @acastro

Comments and Reviews