Inproceedings,

Scaling Out-of-Distribution Detection for Real-World Settings

, , , , , , , and .
Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, page 8759--8773. PMLR, (17--23 Jul 2022)

Abstract

Detecting out-of-distribution examples is important for safety-critical machine learning applications such as detecting novel biological phenomena and self-driving cars. However, existing research mainly focuses on simple small-scale settings. To set the stage for more realistic out-of-distribution detection, we depart from small-scale settings and explore large-scale multiclass and multi-label settings with high-resolution images and thousands of classes. To make future work in real-world settings possible, we create new benchmarks for three large-scale settings. To test ImageNet multiclass anomaly detectors, we introduce the Species dataset containing over 700,000 images and over a thousand anomalous species. We leverage ImageNet-21K to evaluate PASCAL VOC and COCO multilabel anomaly detectors. Third, we introduce a new benchmark for anomaly segmentation by introducing a segmentation benchmark with road anomalies. We conduct extensive experiments in these more realistic settings for out-of-distribution detection and find that a surprisingly simple detector based on the maximum logit outperforms prior methods in all the large-scale multi-class, multi-label, and segmentation tasks, establishing a simple new baseline for future work.

Tags

Users

  • @andolab
  • @dblp

Comments and Reviews