Article,

Genomic resources for invertebrate vectors of human pathogens, and the role of VectorBase

, , , , , and .
Infection Genetics and Evolution, (2009)

Abstract

High-throughput genome sequencing techniques have now reached vector biology with an emphasis on those species that are vectors of human pathogens. The first mosquito to be sequenced was Anopheles gambiae, the vector for Plasmodium parasites that cause malaria. Further mosquitoes have followed: Aedes aegypti (yellow fever and dengue fever vector) and Culex pipiens (lymphatic filariasis and West Nile fever). Species that are currently in sequencing include the body louse Pediculus humanus (Typhus vector), the triatomine Rhodnius prolixus (Chagas disease vector) and the tick Ixodes scapularis (Lyme disease vector). The motivations for sequencing vector genomes are to further understand vector biology, with an eye on developing new control strategies (for example novel chemical attractants or repellents) or understanding the limitations of current strategies (for example the mechanism of insecticide resistance); to analyse the mechanisms driving their evolution; and to perform an exhaustive analysis of the gene repertory. The proliferation of genomic data creates the need for efficient and accessible storage. We present VectorBase, a genomic resource centre that is both involved in the annotation of vector genomes and act as a portal for access to the genomic information (http://www.vectorbase.org). (C) 2008 Elsevier B.V. All rights reserved.

Tags

Users

  • @nmunn

Comments and Reviews