Misc,

Empirical models for Dark Matter Halos. I. Nonparametric Construction of Density Profiles and Comparison with Parametric Models

, , , , and .
(2005)cite arxiv:astro-ph/0509417 Comment: AJ in press.

Abstract

We use techniques from nonparametric function estimation theory to extract the density profiles, and their derivatives, from a set of N-body dark matter halos. We consider halos generated from LCDM simulations of gravitational clustering, as well as isolated, spherical collapses. The logarithmic density slopes gamma = d(log rho)/d(log r) of the LCDM halos are found to vary as power-laws in radius, reaching values of gamma ~ -1 at the innermost resolved radii (~0.01 r_virial). This behavior is significantly different from that of broken power-law models like the NFW profile, but similar to that of models like de Vaucouleurs'. Accordingly, we compare the N-body density profiles with various parametric models to find which provide the best fit. We consider an NFW-like model with arbitrary inner slope; Dehnen & McLaughlin's anisotropic model; Einasto's model (identical in functional form to Sersic's model but fit to the space density); and the density model of Prugniel & Simien that was designed to match the deprojected form of Sersic's R^1/n law. Overall, the best-fitting model to the LCDM halos is Einasto's, although the Prugniel-Simien and Dehnen-McLaughlin models also perform well. With regard to the spherical collapse halos, both the Prugniel-Simien and Einasto models describe the density profiles well, with an rms scatter some four times smaller than that obtained with either the NFW-like model or the 3-parameter Dehnen-McLaughlin model. Finally, we confirm recent claims of a systematic variation in profile shape with halo mass.

Tags

Users

  • @ad4

Comments and Reviews