Article,

Sperm should evolve to make female meiosis fair.

, and .
bioRxiv, (2014)
DOI: 10.1101/005363

Abstract

Genomic conflicts arise when an allele gains an evolutionary advantage at a cost to organismal fitness. Oogenesis is inherently susceptible to such conflicts because alleles compete to be the product of female meiosis transmitted to the egg. Alleles that distort meiosis in their favor (i.e. meiotic drivers) often decrease organismal fitness, and therefore indirectly favor the evolution of mechanisms to suppress meiotic drive. In this light, many facets of oogenesis and gametogenesis have been interpreted as mechanisms of protection against genomic outlaws. Why then is female meiosis often left uncompleted until after fertilization in many animals -- potentially providing an opportunity for sperm alleles to meddle with its outcome and help like-alleles drive in heterozygous females? The population genetic theory presented herein suggests that sperm nearly always evolve to increase the fairness of female meiosis in the face of genomic conflicts. These results are consistent with current knowledge of sperm-dependent meiotic drivers (loci whose distortion of female meiosis depends on sperm genotype), and suggest that the requirement of fertilization for the completion of female meiosis potentially represents a mechanism employed by females to ensure a fair meiosis.Received May 20, 2014.Accepted May 21, 2014.© 2014, Published by Cold Spring Harbor Laboratory PressThis pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0/

Tags

Users

  • @peter.ralph

Comments and Reviews