Article,

Efficient Indium-Doped TiOx Electron Transport Layers for High-Performance Perovskite Solar Cells and Perovskite-Silicon Tandems

, , , , , , , , , , , , and .
Advanced Energy Materials, (2016)
DOI: 10.1002/aenm.201601768

Abstract

In addition to a good perovskite light absorbing layer, the hole and electron transport layers play a crucial role in achieving high-efficiency perovskite solar cells. Here, a simple, one-step, solution-based method is introduced for fabricating high quality indium-doped titanium oxide electron transport layers. It is shown that indium-doping improves both the conductivity of the transport layer and the band alignment at the ETL/perovskite interface compared to pure TiO2, boosting the fill-factor and voltage of perovskite cells. Using the optimized transport layers, a high steady-state efficiency of 17.9% for CH3NH3PbI3-based cells and 19.3% for Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3-based cells is demonstrated, corresponding to absolute efficiency gains of 4.4% and 1.2% respectively compared to TiO2-based control cells. In addition, a steady-state efficiency of 16.6% for a semi-transparent cell is reported and it is used to achieve a four-terminal perovskite-silicon tandem cell with a steady-state efficiency of 24.5%.

Tags

Users

  • @bretschneider_m

Comments and Reviews