Getting the Message?: A Study of Explanation Interfaces for Microblog Data Analysis
, , , , , and .
Proceedings of the 20th International Conference on Intelligent User Interfaces, page 345--356. New York, NY, USA, ACM, (2015)

In many of today's online applications that facilitate data exploration, results from information filters such as recommender systems are displayed alongside traditional search tools. However, the effect of prediction algorithms on users who are performing open-ended data exploration tasks through a search interface is not well understood. This paper describes a study of three interface variations of a tool for analyzing commuter traffic anomalies in the San Francisco Bay Area. The system supports novel interaction between a prediction algorithm and a human analyst, and is designed to explore the boundaries, limitations and synergies of both. The degree of explanation of underlying data and algorithmic process was varied experimentally across each interface. The experiment (N=197) was performed to assess the impact of algorithm transparency/explanation on data analysis tasks in terms of search success, general insight into the underlying data set and user experience. Results show that 1) presence of recommendations in the user interface produced a significant improvement in recall of anomalies, 2) participants were able to detect anomalies in the data that were missed by the algorithm, 3) participants who used the prediction algorithm performed significantly better when estimating quantities in the data, and 4) participants in the most explanatory condition were the least biased by the algorithm's predictions when estimating quantities.
This publication has not been reviewed yet.

rating distribution
average user rating0.0 out of 5.0 based on 0 reviews
    Please log in to take part in the discussion (add own reviews or comments).