Misc,

The BINGO Project V: Further steps in Component Separation and Bispectrum Analysis

, , , , , , , , , , , , , , , , , , , , , and .
(2021)cite arxiv:2107.01637Comment: 19 pages, 16 figures, 1 table. Submitted to A&A.

Abstract

Observing the neutral Hydrogen (HI) distribution across the Universe via redshifted 21-cm line Intensity Mapping (IM) constitutes a powerful probe for cosmology. However, this redshifted 21cm signal is obscured by the foreground emission. This paper addresses the capabilities of the BINGO survey to separate such signals. Specifically, this paper (a) looks in detail at the different residuals left over by foreground components, (b) shows that a noise-corrected spectrum is unbiased and (c) shows that we understand the remaining systematic residuals by analyzing non-zero contributions to the three point function. We use the Generalized Needlet Internal Linear Combination (GNILC), which we apply to sky simulations of the BINGO experiment for each redshift bin of the survey. We present our recovery of the redshifted 21-cm signal from sky simulations of the BINGO experiment including foreground components. We test the recovery of the 21-cm signal through the angular power spectrum at different redshifts, as well as the recovery of its non-Gaussian distribution through a bispectrum analysis. We find that non-Gaussianities from the original foreground maps can be removed down to, at least, the noise limit of the BINGO survey with such techniques. Our bispectrum analysis yields strong tests of the level of the residual foreground contamination in the recovered 21-cm signal, thereby allowing us to both optimize and validate our component separation analysis. (Abridged)

Tags

Users

  • @gpkulkarni

Comments and Reviews