Transition Metal Complexes As Quantum Dots: Excellent alternatives to Organic Chromophores for Biological Imaging Applications
D. kinthada.
International Journal of Management, Sciences, Innovation, and Technology IJMSIT 2 (1): 01-8 (January 2021)

In recent years, different types of inorganic nanoparticles (iNPs) with unique physicochemical properties have emerged.1−4 Among these, quantum dots (QDs) have proved to be very versatile,finding applications in electroluminescent displays, quantumcomputing, photovoltaics , solar cells,transistors,and biological imaging.For biological imaging applications, QDs are now excellent alternatives to organic chromophores.given that they can have similar sizes, shapes,and surface functional groups. A potentially prolific new direction in inorganic chemistry and nanochemistry could be to combine NPs with small metal complexes to seek synergistic and/or cooperative effects. In this context,combining QDs with coordination complexes is being explored as a new strategy to obtain cooperative systems with improved properties for applications in sensing, biological imaging, and molecular therapy. A prominent area of research in coordination chemistry is the development of metal complexes that can act as artificial nucleases. Overall, these synthetic DNA-cleaving reagents.
  • @kayyali99
This publication has not been reviewed yet.

rating distribution
average user rating0.0 out of 5.0 based on 0 reviews
    Please log in to take part in the discussion (add own reviews or comments).