Semantic, Automatic Image Annotation Based on Multi-Layered Active Contours and Decision Trees
.
International Journal of Advanced Computer Science and Applications(IJACSA) (2013)

In this paper, we propose a new approach for automatic image annotation (AIA) in order to automatically and efficiently assign linguistic concepts to visual data such as digital images, based on both numeric and semantic features. The presented method first computes multi-layered active contours. The first-layer active contour corresponds to the main object or foreground, while the next-layers active contours delineate the object’s subparts. Then, visual features are extracted within the regions segmented by these active contours and are mapped into semantic notions. Next, decision trees are trained based on these attributes, and the image is semantically annotated using the resulting decision rules. Experiments carried out on several standards datasets have demonstrated the reliability and the computational effectiveness of our AIA system.
  • @thesaiorg
This publication has not been reviewed yet.

rating distribution
average user rating0.0 out of 5.0 based on 0 reviews
    Please log in to take part in the discussion (add own reviews or comments).