Article,

Human resting CD4+ T cells are constitutively inhibited by TGF beta under steady-state conditions.

, , , , , , , , , , and .
J Immunol, 178 (11): 6931--6940 (June 2007)

Abstract

Based on studies in knockout mice, several inhibitory factors such as TGFbeta, IL-10, or CTLA-4 have been implicated as gate keepers of adaptive immune responses. Lack of these inhibitory molecules leads to massive inflammatory responses mainly mediated by activated T cells. In humans, the integration of these inhibitory signals for keeping T cells at a resting state is less well understood. To elucidate this regulatory network, we assessed early genome-wide transcriptional changes during serum deprivation in human mature CD4(+) T cells. The most striking observation was a "TGFbeta loss signature" defined by down-regulation of many known TGFbeta target genes. Moreover, numerous novel TGFbeta target genes were identified that are under the suppressive control of TGFbeta. Expression of these genes was up-regulated once TGFbeta signaling was lost during serum deprivation and again suppressed upon TGFbeta reconstitution. Constitutive TGFbeta signaling was corroborated by demonstrating phosphorylated SMAD2/3 in resting human CD4(+) T cells in situ, which were dephosphorylated during serum deprivation and rephosphorylated by minute amounts of TGFbeta. Loss of TGFbeta signaling was particularly important for T cell proliferation induced by low-level TCR and costimulatory signals. We suggest TGFbeta to be the most prominent factor actively keeping human CD4(+) T cells at a resting state.

Tags

Users

  • @bbrors

Comments and Reviews