Article,

In the middle of it all: Mutual mechanical regulation between the nucleus and the cytoskeleton

, , and .
Journal of Biomechanics, 43 (1): 2--8 (2010)Special Issue on Cell Mechanobiology.
DOI: 10.1016/j.jbiomech.2009.09.002

Abstract

The nucleus is typically treated as the large phase-dense or easy-to-label structure at the center of the cell which is manipulated by the governing mechanical machinery inside the cytoplasm. However, recent evidence has suggested that the mechanical properties of the nucleus are important to cell fate. We will discuss many aspects of the structural and functional interconnections between nuclear mechanics and cellular mechanics in this review. There are numerous implications for the progression of many disease states associated with both nuclear structural proteins and cancers. The nucleus itself is a large organelle taking up significant volume within the cell, and most studies agree that nuclei are significantly stiffer than the surrounding cytoplasm. Thus when a cell is exposed to force, the nucleus is exposed to and helps resist that force. The nucleus and nucleoskeleton are interconnected with the cellular cytoskeleton, and these connections may aid in helping disperse forces within tissues and/or with mechanotransduction. During translocation and transmigration the nucleus can act as a resistive element. Understanding the role of mechanical regulation of the nucleus may aid in understanding cellular motility and crawling through confined geometries. Thus the nucleus plays a role in developing mechanical territories and niches, affecting rates of wound healing and allowing cells to transmigrate through tissues for developmental, repair or pathological means.

Tags

Users

  • @bkoch

Comments and Reviews