BibSonomy

The blue social bookmark and publication sharing system.

( en | de | ru )

 

group
  • tag
  • user
  • group
  • author
  • concept
  • BibTeX key
  • search
ai_dl_club
  • sign in
  • register
  • groups
  • genealogy
  • popular 
    • posts
    • tags
    • authors
    • concepts
    • discussions
  • sign in
  • register

Login

Log in with your username.

@

I've lost my password.


Log in with your OpenID-Provider.

  • Other OpenID-Provider
  1. group
  2. ai_dl_club
  3. Distributed

Publication title

bookmarks  (hide)1
  • display
  • all
  • bookmarks only
  • bookmarks per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • sort by
  • added at
  • title
  • RSS
  • BibTeX
  • XML

  •  

     
    1Introduction to Distributed Training of Neural Networks
     

    https://blog.skymind.ai/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks/
    7 years ago by @straybird321
    show all tags
    • distributed
     
      distributed
      copydelete
      • community post
      • history of this post
       
       
    • ⟨⟨
    • ⟨
    • 1
    • ⟩
    • ⟩⟩

    publications  (hide)1  
    • display
    • all
    • publications only
    • publications per page
    • 5
    • 10
    • 20
    • 50
    • 100
    • sort by
    • added at
    • title
    • author
    • publication date
    • entry type
    • help for advanced sorting...
    • RSS
    • BibTeX
    • RDF
    • more...

    •  

       
      3Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
       

      Y. Lin, S. Han, H. Mao, Y. Wang, and W. Dally. (2017)cite arxiv:1712.01887Comment: we find 99.9% of the gradient exchange in distributed SGD is redundant; we reduce the communication bandwidth by two orders of magnitude without losing accuracy.
      7 years ago by @straybird321
      show all tags
      • computing
      • Distributed
      • SGD
      • compression
       
        computingDistributedSGDcompression
        copydeleteadd this publication to your clipboard
        • community post
        • history of this post
        • URL
        • DOI
        • BibTeX
        • EndNote
        • APA
        • Chicago
        • DIN 1505
        • Harvard
        • MSOffice XML
         
         
      • ⟨⟨
      • ⟨
      • 1
      • ⟩
      • ⟩⟩

      ai_dl_club

      @ai_dl_club

      AI paper discussion

      CVexplore
      join

      browse

      • Distributed as tag from all users

      related tags

      • + | computing
      • + | SGD
      • + | compression
      • + | distributed

      tags

      • nlp
      • nas
      • pruning
      • adversarial
      • Federated_Learning
      • unsupervised-learning
      • AutoML
      • BERT
      • Adversarial
      • NLP
      • large_model
      • Invariance
      • SGD
      • Randomly_Wired_Neural_Networks
      • disentanglement
      • semi-supervised-learning
      • embeddings
      • i-ResNets
      • gradient_descent
      • review
      • ELMo
      • sgd
      • protein
      • ml
      • transformers
      • soat
      • basic
      • graphs
      • tensorflow
      • transfer_learning
      • Wasserstein
      • GAN
      • Data_Augmentation
      • Distributed
      • Reinforcement_Learning
      • NAS
      • compression
      • self-supervised-learning
      • Introspective_Neural_Networks
      • Invertible
      • computing
      • Robustness
      • deployment
      • benchmarking
      • machine_learning
      • blog
      • GPU
      • sequencing
      • allreduce
      What is BibSonomy?
      Getting Started
      Browser Buttons
      Help
      Developer
      Overview
      API Documentation
      Contact & Privacy
      Contact
      Privacy & Terms of Use
      Cookies
      Report Issues
      BibSonomy Wiki
      Integration
      PUMA
      TYPO3 Extension
      WordPress Plugin
      Java REST Client
      Supported Sites
      more
      About BibSonomy
      Team
      Blog
      Mailing List
      Social Media
       Follow us on Twitter

      BibSonomy is offered by the Data Science Chair of the University of Würzburg, the Information Processing and Analytics Group of the Humboldt-Unversität zu Berlin, the KDE Group of the University of Kassel, and the L3S Research Center.