,

Observation of a $d$-wave nodal liquid in highly underdoped Bi$_2$Sr$_2$CaCu$_2$O$_8+\delta$

, , , , , , , , , , , , , , , , , и .
Nature Phys., 6 (2): 99--103 (февраля 2010)

Аннотация

A key question in condensed-matter physics is to understand how high-temperature superconductivity emerges on adding mobile charged carriers to an antiferromagnetic Mott insulator. We address this question using angle-resolved photoemission spectroscopy to probe the electronic excitations of the non-superconducting state that exists between the Mott insulator and the d-wave superconductor in Bi2Sr2CaCu2O8+δ. Despite a temperature-dependent resistivity characteristic of an insulator, the excitations in this intermediate state have a highly anisotropic energy gap that vanishes at four points in momentum space. This nodal-liquid state has the same gap structure as that of the d-wave superconductor but no sharp quasiparticle peaks. We observe a smooth evolution of the excitation spectrum, along with the appearance of coherent quasiparticles, as one goes through the insulator-to-superconductor transition as a function of doping. Our results suggest that high-temperature superconductivity emerges when quantum phase coherence is established in a non-superconducting nodal liquid.

тэги

Пользователи данного ресурса

  • @nplumb

Комментарии и рецензии