Article,

Differential distribution of beta-adrenergic receptor subtypes in blood vessels of knockout mice lacking beta(1)- or beta(2)-adrenergic receptors

, , , , , and .
Mol Pharmacol, 60 (5): 955-62 (November 2001)Chruscinski, A Brede, M E Meinel, L Lohse, M J Kobilka, B K Hein, L Research Support, Non-U.S. Gov't United States Molecular pharmacology Mol Pharmacol. 2001 Nov;60(5):955-62..

Abstract

beta-Adrenergic receptors (beta-AR) are essential regulators of cardiovascular homeostasis. In addition to their prominent function in the heart, beta-AR are located on vascular smooth muscle cells, where they mediate vasodilating effects of endogenous catecholamines. In this study, we have investigated in an isometric myograph different types of blood vessels from mice lacking beta(1)- and/or beta(2)-adrenergic receptor subtypes (beta(1)-KO, beta(2)-KO, beta(1)beta(2)-KO). In wild-type mice, isoproterenol induced relaxation of segments from thoracic aorta, carotid, femoral and pulmonary arteries, and portal vein. The relaxant effect of beta-receptor stimulation was absent in femoral and pulmonary arteries from beta(1)-KO mice. In aortic and carotid arteries and in portal veins, the vasodilating effect of isoproterenol was reduced in mice lacking beta(1)- or beta(2)-receptors. However, in these vessels the vasodilating effect was only abolished in double KO mice lacking both beta(1)- and beta(2)-receptors. Vessel relaxation induced by forskolin did not differ between wild-type and KO mice. Similar contributions of beta(1)- and beta(2)-receptors to isoproterenol-induced vasorelaxation were found when vessels from KO mice were compared with wild-type arteries in the presence of subtype-selective beta-receptor antagonists. These studies demonstrate that beta(1)-adrenergic receptors play a dominant role in the murine vascular system to mediate vasodilation. Surprisingly, beta(2)-receptors contribute to adrenergic vasodilation only in a few major blood vessels, suggesting that differential distribution of beta-adrenergic receptor subtypes may play an important role in redirection of tissue perfusion.

Tags

Users

  • @pharmawuerz

Comments and Reviews