Abstract

Spectral partitioning methods use the Fiedler vector|the eigenvector of the second- smallest eigenvalue of the Laplacian matrix|to nd a small separator of a graph. These methods are important components of many scienti c numerical algorithms and have been demonstrated by experiment to work extremely well. In this paper, we show that spectral partitioning methods work well on bounded-degree planar graphs and nite element meshes| the classes of graphs to which they are usually applied. While naive spectral bisection does not necessarily work, we prove that spectral partitioning techniques can be used to produce p separators whose ratio of vertices removed to edges cut is O( n) for bounded-degree planar graphs and two-dimensional meshes and O n1=d for well-shaped d-dimensional meshes. The heart of our analysis is an upper bound on the second-smallest eigenvalues of the Laplacian matrices of these graphs.

Description

diese Referenz mag nicht 100%ig stimmen

Links and resources

Tags

community