@peter.ralph

Global landscape of recent inferred Darwinian selection for Homo sapiens

, , , and . Proceedings of the National Academy of Sciences of the United States of America, 103 (1): 135-140 (2006)
DOI: 10.1073/pnas.0509691102

Abstract

By using the 1.6 million single-nucleotide polymorphism (SNP) genotype data set from Perlegen Sciences Hinds, D. A., Stuve, L. L., Nilsen, G. B., Halperin, E., Eskin, E., Ballinger, D. G., Frazer, K. A. & Cox, D. R. (2005) 307, 1072–1079, a probabilistic search for the landscape exhibited by positive Darwinian selection was conducted. By sorting each high-frequency allele by homozygosity, we search for the expected decay of adjacent SNP linkage disequilibrium (LD) at recently selected alleles, eliminating the need for inferring haplotype. We designate this approach the LD decay (LDD) test. By these criteria, 1.6\% of Perlegen SNPs were found to exhibit the genetic architecture of selection. These results were confirmed on an independently generated data set of 1.0 million SNP genotypes (International Human Haplotype Map Phase I freeze). Simulation studies indicate that the LDD test, at the megabase scale used, effectively distinguishes selection from other causes of extensive LD, such as inversions, population bottlenecks, and admixture. The ≈1,800 genes identified by the LDD test were clustered according to Gene Ontology (GO) categories. Based on overrepresentation analysis, several predominant biological themes are common in these selected alleles, including host–pathogen interactions, reproduction, DNA metabolism/cell cycle, protein metabolism, and neuronal function.

Links and resources

Tags