@denilw

SATB1 family protein expressed during early erythroid differentiation modifies globin gene expression.

, , , , , and . Blood, 105 (8): 3330-9 (April 2005)
DOI: 10.1182/blood-2004-08-2988

Abstract

Special AT-rich binding protein 1 (SATB1) nuclear protein, expressed predominantly in T cells, regulates genes through targeting chromatin remodeling during T-cell maturation. Here we show SATB1 family protein induction during early human adult erythroid progenitor cell differentiation concomitant with epsilon-globin expression. Erythroid differentiation of human erythroleukemia K562 cells by hemin simultaneously increases gamma-globin and down-regulates SATB1 family protein and epsilon-globin gene expression. Chromatin immunoprecipitation using anti-SATB1 anti-body shows selective binding in vivo in the beta-globin cluster to the hypersensitive site 2 (HS2) in the locus control region (LCR) and to the epsilon-globin promoter. SATB1 overexpression increases epsilon-globin and decreases gamma-globin gene expression accompanied by histone hyperacetylation and hypomethylation in chromatin from the epsilon-globin promoter and HS2, and histone hypoacetylation and hypermethylation associated with the gamma-globin promoter. In K562 cells SATB1 family protein forms a complex with CREB-binding protein (CBP) important in transcriptional activation. In cotransfection experiments, increase in epsilon-promoter activity by SATB1 was amplified by CBP and blocked by E1A, a CBP inhibitor. Our results suggest that SATB1 can up-regulate the epsilon-globin gene by interaction with specific sites in the beta-globin cluster and imply that SATB1 family protein expressed in the erythroid progenitor cells may have a role in globin gene expression during early erythroid differentiation.

Links and resources

Tags