Article,

Differentiation-on-a-chip: A microfluidic platform for long-term cell culture studies

, , and .
Lab Chip, 5 (1): 14--19 (2005)
DOI: 10.1039/B405719H

Abstract

Here we demonstrate a microfluidic perfusion system suitable for a long-term (>2 week) culture of muscle cells spanning the whole process of differentiation from myoblasts to myotubes. Cell-adhesive surface microdomains alternating with a robust cell-repellent coating mimic spatial cues for muscle cell assembly and allow for confining the fusion of myoblasts into aligned, isolated multinucleated myotubes. The microfluidic system provides accurate control of the perfusion rates and biochemical composition of the environment surrounding the cells. Comparing muscle cell-specific differentiation markers and the timing of fusion, we observed no differences in differentiation between microfluidic and traditional cultures. All differentiation assays were fully microfluidic, they were performed by sequentially changing the fluids in the microchannels. By delivering fluorescent markers using heterogeneous laminar flows, it was possible to confine a membrane receptor labeling assay to a region smaller than a myotube. Our method can serve as an improved model for studying muscle cell differentiation and for characterizing extracellular molecules and mechanisms involved in neuromuscular differentiation.

Tags

Users

  • @bkoch
  • @fdiehl

Comments and Reviews