MultiGrain: a unified image embedding for classes and instances
, , , , и .
(2019)cite arxiv:1902.05509.

MultiGrain is a network architecture producing compact vector representations that are suited both for image classification and particular object retrieval. It builds on a standard classification trunk. The top of the network produces an embedding containing coarse and fine-grained information, so that images can be recognized based on the object class, particular object, or if they are distorted copies. Our joint training is simple: we minimize a cross-entropy loss for classification and a ranking loss that determines if two images are identical up to data augmentation, with no need for additional labels. A key component of MultiGrain is a pooling layer that allow us to take advantage of high-resolution images with a network trained at a lower resolution. When fed to a linear classifier, the learned embeddings provide state-of-the-art classification accuracy. For instance, we obtain 79.3% top-1 accuracy with a ResNet-50 learned on Imagenet, which is a +1.7% absolute improvement over the AutoAugment method. When compared with the cosine similarity, the same embeddings perform on par with the state-of-the-art for image retrieval at moderate resolutions.
искать в
  • @nmatsuk
  • @dblp

распределение оценок
средняя оценка пользователей3,0 из 5.0 на основе 1 рецензия
  • userPicture
    один месяц назад
Пожалуйста, войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)