From post

Exploiting invariant structure for controlling multiple muscles in anthropomorphic legs: II. Experimental evidence for three equilibrium-point-based synergies during human pedaling.

, , , , , , , , , и . Humanoids, стр. 1167-1172. IEEE, (2016)

Please choose a person to relate this publication to

To differ between persons with the same name, the academic degree and the title of an important publication will be displayed.

 

Другие публикации лиц с тем же именем

Predicting efficacy of robot-aided rehabilitation in chronic stroke patients using an MRI-compatible robotic device., , , , , , и . EMBC, стр. 7470-7473. IEEE, (2011)The effects of galvanic vestibular stimulation and vision on perception of ground inclination., , и . BioRob, стр. 1019-1022. IEEE, (2016)Adaptive impedance control for robot-aided rehabilitation of ankle movements., , , и . BioRob, стр. 664-669. IEEE, (2014)Human-Robot Interaction: Controller Design and Stability., , и . BioRob, стр. 1096-1101. IEEE, (2020)Characteristics of Human Behavior in Force Modulation while Performing Force Tracking Tasks., и . BioRob, стр. 240-245. IEEE, (2020)Exploiting invariant structure for controlling multiple muscles in anthropomorphic legs: II. Experimental evidence for three equilibrium-point-based synergies during human pedaling., , , , , , , , , и . Humanoids, стр. 1167-1172. IEEE, (2016)Hand rehabilitation using Soft-Robotics., , , , и . BioRob, стр. 698-703. IEEE, (2016)Anklebot-assisted locomotor training after stroke: A novel deficit-adjusted control approach., , , , и . ICRA, стр. 2175-2182. IEEE, (2013)Headset design to accommodate four-pole galvanic vestibular stimulation., , и . BioRob, стр. 1335-1339. IEEE, (2016)Rehabilitation robotics: An academic engineer perspective.. EMBC, стр. 6709-6712. IEEE, (2011)