Extremely fast text feature extraction for classification and indexing
, and .
CIKM '08: Proceeding of the 17th ACM conference on Information and knowledge management, page 1221--1230. New York, NY, USA, ACM, (2008)

Most research in speeding up text mining involves algorithmic improvements to induction algorithms, and yet for many large scale applications, such as classifying or indexing large document repositories, the time spent extracting word features from texts can itself greatly exceed the initial training time. This paper describes a fast method for text feature extraction that folds together Unicode conversion, forced lowercasing, word boundary detection, and string hash computation. We show empirically that our integer hash features result in classifiers with equivalent statistical performance to those built using string word features, but require far less computation and less memory.
  • @lee_peck
  • @dblp
  • @gromgull
This publication has not been reviewed yet.

rating distribution
average user rating0.0 out of 5.0 based on 0 reviews
    Please log in to take part in the discussion (add own reviews or comments).